Distinguishing 4-dimensional geometries via profinite completions
نویسندگان
چکیده
It is well-known that there are 19 classes of geometries for 4-dimensional manifolds in the sense Thurston. We could ask to what extent geometric information revealed by profinite completion fundamental group a closed smooth 4-manifold. In this paper, we show if two manifolds, neither whose $$\mathbb {H}^{4}$$ or {H}^{2}_{\mathbb {C}}$$ , share same then they have geometry. Moreover, despite fact not every 4-manifold admit one geometry Thurston, some with Seifert fibred structures indeed geometric. For orientable M, whether M be detected its group.
منابع مشابه
Cartesian products as profinite completions
We prove that if a Cartesian product of alternating groups is topologically finitely generated, then it is the profinite completion of a finitely generated residually finite group. The same holds for Cartesian producs of other simple groups under some natural restrictions.
متن کاملProfinite groups, profinite completions and a conjecture of Moore
Let R be any ring (with 1), Γ a group and RΓ the corresponding group ring. Let H be a subgroup of Γ of finite index. Let M be an RΓ−module, whose restriction to RH is projective. Moore’s conjecture [5]: Assume for every nontrivial element x in Γ, at least one of the following two conditions holds: M1) 〈x〉 ∩ H 6= {e} (in particular this holds if Γ is torsion free) M2) ord(x) is finite and invert...
متن کاملProfinite Heyting Algebras and Profinite Completions of Heyting Algebras
This paper surveys recent developments in the theory of profinite Heyting algebras (resp. bounded distributive lattices, Boolean algebras) and profinite completions of Heyting algebras (resp. bounded distributive lattices, Boolean algebras). The new contributions include a necessary and sufficient condition for a profinite Heyting algebra (resp. bounded distributive lattice) to be isomorphic to...
متن کاملThe Schur Multiplier, Profinite Completions and Decidability
We fix a finitely presented group Q and consider short exact sequences 1 → N → Γ → Q → 1 with Γ finitely generated. The inclusion N ↪→ Γ induces a morphism of profinite completions N̂ → Γ̂. We prove that this is an isomorphism for all N and Γ if and only if Q is super-perfect and has no proper subgroups of finite index. We prove that there is no algorithm that, given a finitely presented, residua...
متن کاملDecision Problems and Profinite Completions of Groups
We consider pairs of finitely presented, residually finite groups P ↪→ Γ for which the induced map of profinite completions P̂ → Γ̂ is an isomorphism. We prove that there is no algorithm that, given an arbitrary such pair, can determine whether or not P is isomorphic to Γ. We construct pairs for which the conjugacy problem in Γ can be solved in quadratic time but the conjugacy problem in P is uns...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geometriae Dedicata
سال: 2022
ISSN: ['0046-5755', '1572-9168']
DOI: https://doi.org/10.1007/s10711-022-00712-8